Hamiltonian degree conditions which imply a graph is pancyclic

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New sufficient conditions for hamiltonian and pancyclic graphs

For a graph G of order n we consider the unique partition of its vertex set V (G) = A ∪ B with A = {v ∈ V (G) : d(v) ≥ n/2} and B = {v ∈ V (G) : d(v) < n/2}. Imposing conditions on the vertices of the set B we obtain new sufficient conditions for hamiltonian and pancyclic graphs.

متن کامل

groups for which the noncommuting graph is a split graph

the noncommuting graph $nabla (g)$ of a group $g$ is asimple graph whose vertex set is the set of noncentral elements of$g$ and the edges of which are the ones connecting twononcommuting elements. we determine here, up to isomorphism, thestructure of any finite nonabeilan group $g$ whose noncommutinggraph is a split graph, that is, a graph whose vertex set can bepartitioned into two sets such t...

متن کامل

Improved degree conditions for Hamiltonian properties

In 1980, Bondy proved that for an integer k ≥ 2 a (k+ s)-connected graph of order n ≥ 3 is traceable (s = −1) or Hamiltonian (s = 0) or Hamiltonian-connected (s = 1) if the degree sum of every set of k+1 pairwise nonadjacent vertices is at least 1 2 ((k+1)(n+ s−1)+1). This generalizes the well-known sufficient conditions of Dirac (k = 0) and Ore (k = 1). The condition in Bondy’s Theorem is not ...

متن کامل

Degree conditions for k-ordered hamiltonian graphs

For a positive integer k, a graph G is k-ordered hamiltonian if for every ordered sequence of k vertices there is a hamiltonian cycle that encounters the vertices of the sequence in the given order. It is shown that if G is a graph of order n with 3 k n /2, and deg(u)þ deg(v ) nþ (3k 9)/2 for every pair u; v of nonadjacent vertices of G, then G is k-ordered hamiltonian. Minimum degree condition...

متن کامل

Necessary and Sufficient Conditions for a Hamiltonian Graph

A graph is singular if the zero eigenvalue is in the spectrum of its 0-1 adjacency matrix A. If an eigenvector belonging to the zero eigenspace of A has no zero entries, then the singular graph is said to be a core graph. A (κ, τ)-regular set is a subset of the vertices inducing a κ-regular subgraph such that every vertex not in the subset has τ neighbours in it. We consider the case when κ = τ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 1990

ISSN: 0095-8956

DOI: 10.1016/0095-8956(90)90133-k